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Abstract 

The substantial health risk posed by lung cancer has sparked general public alarm. The 

likelihood of a favourable outcome from therapy for lung cancer is greatly improved by early 

identification. One potential way to improve the accuracy of early-stage lung cancer detection 

is to use deep learning in conjunction with a convolutional neural network (CNN). Using data 

sets obtained from the Image Database Resource Initiative (IDRI) and the Lung Image 

Database Consortium (LIDC), this research presents two separate approaches to lung cancer 

detection. Support vector machines (SVMs) and deep convolutional neural networks (CNNs) 

are used to classify lung cancer images as either malignant or non-cancerous. The 

convolutional neural network (CNN) is trained in MATLAB using either a single batch or 

numerous batches before classification. During multiple batch training, the deep CNN 

achieves an accuracy of 80% and during single batch training, it achieves a surprising 100% 

in classification, which is a huge improvement over the SVM's modest 65%. The remarkable 

testing performance of the deep CNN stands out; in less than 20 iterations, it achieves nearly 

100% classification accuracy. The assessment is carried out with the use of 25 CT scans of 

the lungs, with a resolution of 512×512 pixels each scan. In contrast to earlier studies that 

mostly concentrated on clipped pictures of lung cancer nodules, this one demonstrates the 

effectiveness of the deep CNN in evaluating complete lung CT scans.  

 
INTRODUCTION  

 

Undoubtedly, lung cancer stands as the leading cause of cancer-related deaths in both men 

and women, surpassing the combined mortality rates of breast, colon, and prostate cancers. 

According to the American Society of Lung Cancer, approximately 609,360 deaths and 

1,918,030 new diagnoses of lung cancer were reported in the US last year alone[1]. Lung 

cancer constitutes 5.9% of India's total cancer cases, totalling 5.26 million. Despite its 

severity, some cases of lung cancer are treatable, with around 350,000 individuals surviving 

after early detection and treatment. Hence, early detection is crucial for enhancing patients' 

chances of recovery. 

 

Several invasive methods exist for detecting lung cancer, such as spiral computed 

tomography, sputum cytology, fluorescence bronchoscopy, and lung cancer-related antigens. 

However, their efficacy is limited compared to previous detection techniques. Notably, the 

support vector machine (SVM) classifier demonstrated superior effectiveness in tests 
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involving rice, data mining, and skin disease diagnosis. Additionally, reports from [7] to [11] 

detail CNN training for medical image categorization, while [12] to [14] document the 

utilization of CNNs and other deep learning models for diagnosing lung cancer following 

unsupervised pretraining on medical or natural imagery. Furthermore, Barbu et al. [13] and 

Feulner et al. [17] provide detailed reports on the extraction of multi-level image 

characteristics for detecting lung nodules and the subsequent analysis results. 

 

Utilizing deep learning techniques alongside a voting function, Rossetto et al. [20] achieved a 

remarkable accuracy rate of 97.5% in classifying lung cancer, with a false positive rate of less 

than 10%. Conversely, manual sputum sample analysis, although prone to errors and time-

consuming, necessitates skilled individuals to mitigate mistakes [21]. In a study by Wu and 

Zhao, their supervised machine learning system, based on entropy degradation and tested on 

a limited set of computed tomography (CT) lung images, attained a lung cancer detection 

accuracy of 77.8% [12]. Kaur [3] presents a survey on various Lung Cancer Detection 

techniques, while Taher and Sammouda's research focuses on early-stage lung cancer 

detection through color sputum image analysis employing neural networks (NN) and a fuzzy 

c-mean (FCM) clustering algorithm [24]. Intel's examination of cervical cancer detection 

revealed an 81% accuracy enhancement with deep learning (DL) technology [25]. 

 

According to Turkki et al. [26], deep convolutional neural networks (CNN) achieved an F-

score of 0.94 in quantifying areas within samples stained with hematoxylin and eosin, 

containing numerous immune cells. An annotation procedure guided by antibodies expedited 

this process. Shin et al.'s investigation involved transfer learning-based CNN for lymph node 

(LN) detection in the thoraco-abdominal region and classification of interstitial lung disease 

(ILD). Their study on mediastinal LN identification using axial CT slices alongside ILD 

categorization achieved 85% sensitivity with a false positive rate of 3% [27]. Utilizing the 

LIDC-IDRI dataset, Krewer et al. [28] examined lung cancer detection and attained a 

classification accuracy of 90.9% with a specificity of 94.74% across 33 CT scans. 

 

Rao et al. demonstrated a 76% classification accuracy for lung cancer detection using a CNN 

trained with a batch size of 20 and 1,000 iterations on the LIDC-IDRI dataset [10]. Sasikala, 

in [11], reported a 96% classification accuracy using a CNN model on 100 LUNG CANCER 

images with a resolution of 20×20 pixels. Abdul found that classifying lung CT images 

achieved an accuracy rate of 97.2% when utilizing a 28×28 nodule image size acquired from 

LIDC-IDRI [32]. Bhat et al. showcased a 96.6% accuracy rate employing CNN for 

categorizing 40×40 pixel LIDC/IDRI lung CT images using three convolution blocks, 

outperforming conventional methods [33]. 

 

Utilizing deep learning methodologies can significantly enhance both the accuracy of early 

detection and the automation of initial diagnoses in medical scans. This study aims to develop 

a robust lung cancer classification model capable of distinguishing between healthy and 

malignant lung CT images sourced from the LIDC-IDRI database [26]. Unlike previous 

studies such as [25]-[28], which focused on excised nodules, we utilized CT scans with a 

resolution of 512×512 pixels for this investigation. Our experiments involve the use of 

support vector machine (SVM) and deep convolutional neural network (CNN) classifiers to 

ascertain the most effective model. The SVM classifier is employed to categorize lung CT 

images as benign or malignant based on statistical features extracted from preprocessed 

LUNG CANCER CT images. Alternatively, deep learning approaches utilizing CNNs with a 
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single convolution block are employed for lung CT image classification. Remarkably, testing 

the deep CNN model on 25 test images with a resolution of 512×512 pixels resulted in a 

remarkable classification accuracy of 100%. 

 

THEORETICAL BACKGROUND  

 

This section gives a brief overview of the two classifiers used in this paper: deep 

Convolutional Neural Network (CNN) and Support Vector Machine (SVM). When it comes 

to two-class classification problems, SVM is generally considered the best tool to solve. In 

contrast, CNN shows no signs of being impacted by shift or spatial variance. 

 

SVM 

 

Support Vector Machines (SVMs) are utilized for two-class classification tasks, separating 

data points into distinct categories. SVM calculates a hyperplane that effectively separates 

these categories. In two-dimensional space, this hyperplane divides the plane into two 

categories or halves. By employing a discriminative classifier, SVM determines the 

hyperplane, where each component's estimation signifies the prediction of a different class, 

and each data point is represented as a point in n-dimensional space. During the training 

phase with labelled samples, the SVM algorithm identifies the optimal hyperplane. SVM data 

points encompass properties derived from the gray level cooccurrence matrix of CT images, 

including contrast, entropy, correlation, and homogeneity energy, as denoted in equations (1)– 

(4). Here, variables P(i, j) represent the cooccurrence values of two pixels at coordinates (i,j), 

N signifies the number of occurrence pairings, µ represents the mean, 𝜎 denotes the standard 

deviation, and 𝜎 represents the variance. Correlation measures the degree of connectivity 

between each pixel and its neighbours across the entire image. A correlation value of 1 or -1 

indicates a completely positive or negative correlation within the image. 

 

 

Homogeneity: 

Homogeneity measures the closeness of a gray level co-occurrence matrix (GLCM) element 

to the diagonal elements. It is computed as  

∑
Pi,j

1 + (i − j)2

N−1

i,j=0

 

Energy: Energy represents the sum of squared elements in the GLCM. It is also known as 

energy homogeneity or energy uniformity. Energy is calculated as: 

∑(Pi,j)
2

N−1

i,j=0

 

Entropy: 

Entropy is a metric of randomness and attains its maximum value when all elements are 

equal. The entropy equation is: 

−∑ ln

N−1

i,j=0

(Pi,j)Pi,j 
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Contrast: 

Contrast measures local variations in the GLCM and is computed as: 

 

∑(i − j)2
N−1

i,j=0

. Pi,j 

CNN  

 

Properties such as invariance to both spatial and shift-related anomalies characterize artificial 

neural networks (ANNs), including convolutional neural networks (CNNs), which rely on a 

shared weights architecture. A CNN comprises an input layer, an output layer, and multiple 

hidden layers. These hidden layers commonly include convolutional, pooling, fully connected 

(FC), and rectified linear unit (ReLU) layers. Although the process resembles cross-

correlation rather than traditional convolution, the CNN setup depends on the nature and 

complexity of the problem it aims to solve with the predicted output. CNNs consist of two 

main components: the classifier and the feature extractor. Following the convolutional and 

pooling layers of the feature extractor, the classification module typically incorporates zero or 

more FC layers. This layer determines the likelihood of the input belonging to one of the 

classifications. Transforming a CNN into a feature extractor involves simply removing the 

output layer and optionally, any remaining fully connected layers. 

 

2.3. CNN architecture for Lung cancer detection  

 

Layers such as the image input, convolution, ReLu, max pooling, fully connected, and 

softmax layers make up the architecture of CNN in lung cancer detection systems. Figure 1 

illustrates this. When it comes to lung CT pictures, the categorization layer is set up with two 

categories: non-cancerous and cancerous. The CNN's input layer contains 512×512 pixel-

sized CT images of the lungs. 

The first input layer uses the LIDC-IDRI data set as input images.  

 

 
 

Figure 1. Layered architecture of CNN network 

 

Within a convolutional neural network (CNN), the second layer is the convolution layer. 

Sliding convolutional kernels traverse the whole input picture in two dimensions in the two-

dimensional convolutional layer, processing information as it goes. Incorporating a bias term 

into the dot product of the input and weights, this layer performs convolution. It is 

mathematically represented as follows: 
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In a convolutional neural network (CNN), the second layer is the convolution layer. Sliding 

convolutional kernels traverse the input picture horizontally and vertically to operate the 2-D 

convolutional layer. The layer incorporates a bias factor and convolves the filter with input 

by computing the dot product of the weights and input. Using the filter K (m, n), the 

convolution process on the image I(a, b) is depicted as follows. 

 

s(t)=∑ ∑ I(a, b). K(m − a, n − b). a. bn−1
b=0

m−1
a=0  

A Max pooling layer follows the ReLU layer in a convolutional neural network (CNN) 

design. This layer helps to decrease the image's size by maintaining the maximum value in 

each 2×2 non-overlapping matrix of a single slice. Therefore, max pooling aids in keeping the 

most powerful activations and rejecting the rest. 

Following the pooling layer in the CNN architecture, the subsequent component is the fully 

connected (FC) layer. In this layer, each neuron is connected to every neuron in the preceding 

layer, determining the likelihood score for categorization. Therefore, the FC layers in deep 

neural networks (DNNs) address the challenge of high-level reasoning. Preceding the final 

FC layer, a softmax layer is typically employed in classification tasks. This layer utilizes the 

softmax function to convert K real input vectors into probabilities, thereby normalizing the 

data. Larger input components are assigned higher probabilities. The softmax layer takes the 

unnormalized outputs from the network and maps them onto a probability distribution for the 

projected output class. Finally, the classification layers constitute the last component of deep 

convolutional neural network architectures. For tasks involving multiple classes, these layers 

compute the cross-entropy loss, assigning inputs to the predetermined number of classes 

based on the outputs from the preceding layer. 

 

3. METHOD  

 

To implement SVM and CNN, the Lung cancer recognition system is accomplished using 

MATLAB's neural network (NN) toolbox. As a resource for this study, the Cancer Imaging 

Archive public access community made available the LIDC-IDRI database, which contains 

images of lung cancer [29]. Over 1,200 people with various cancers affecting various body 

parts make up this massive dataset. The data collection for our experiments is limited to CT 

images containing lung cancer. Lung cancer photos, both normal and pathological, are 

selected from the LIDC-IDRI database. A normal lung CT scan and a cancer CT image are 

shown in Figure 2.  

Two approaches have been utilized for the classification of lung CT images: a) a support 

vector machine classifier and b) a deep learning procedure based on convolutional neural 

networks. Using the LIDC database, 45 labelled CT images of the lungs were acquired, each 

with dimensions of 512×512 pixels. The presence or absence of cancer is indicated for every 

medical dataset. Ct scans of the lung for cancer are divided into two categories in the 

database: training and testing.  
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Figure 2. Lung CT scan images for, (a) Cancer and (b) Cancer 

 

Figure 3 shows the block diagram of the Lung Cancer Detection System, which was 

developed and put into action. Before being fed into SVM and CNN, the input CT images 

undergo pre-processing that changes them from RGB to grey and finally black and white. 

The two methods divide CT scans of the lungs into two categories: those showing no 

malignancy and those showing cancer. In support vector machine (SVM) classification, 

features including energy, contrast, correlation, and entropy are used as inputs. These features 

are retrieved from a cooccurrence matrix that is generated from pre-processed 512×512 pixels 

size lung CT images.  

 

The deep convolutional neural network (CNN) approach uses pre-processed pulmonary 

computed tomography (CT) data for both training and testing. Convolutional neural networks 

(CNNs) can be trained with either a single or numerous batches of randomly chosen images. 

Twenty CT pictures were utilized for training and ten for testing in a single batch of training, 

with fifteen more images set aside to evaluate classification robustness. There were three 

batches of twenty CT images each in the multiple batch training. There are only ever going to 

be two categories in the output layer: benign and malignant.  

The implemented convolutional neural network (CNN) has seven layers of architecture, as 

shown in Figure 1. Training a convolutional neural network (CNN) involves experimenting 

with settings including learning rate, maximum number of epochs, momentum of learning, 

number of filters/kernel, and kernel size, alongside randomly initializing the weights. Before 

training begins, the parameters of each layer in the planned CNN network are established to 

allow for the analysis of parameter effects.  
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RESULTS AND DISCUSSION  

There are three distinct phases to the lung cancer detection experiment: the support vector 

machine (SVM) phase, the convolutional neural network (CNN) phase, and the single batch 

training phase. We go on to talk about the results tables and the quantitative examination of 

these numbers. Subsections 4.1, 4.2, and 4.3 provide the relevant details. The values "1" and 

"0" here represent CT scans of the lung that show cancer and normal tissue, respectively.  

 

4.1. Lung Cancer Detection using SVM  

The accuracy of SVM for different input features selected is shown in Table 1. When looking 

at energy, correlation, or homogeneity as individual features, the SVM classifier had an 

accuracy of 60%; when looking at contrast, the accuracy was 65%. Here, the incorrectly 

identified lung cancer picture is bolded in the column containing the actual output. As an 

example, the value 0 in bold indicates a normal CT scan that has been labelled as a cancer 

imaging. More research into deep CCN is conducted due to the poor accuracy that has been 

achieved.  

 
 

4.2 Lung Cancer Detection training with deep convolutional neural networks utilizing 

different batch techniques 

 Multiple batch training provides flexibility and enhances accuracy when training a CNN 

with a big amount of database. Here, the first batch uses randomly generated convolution 

layer weights for initialization, while subsequent batches use the updated weights from the 
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preceding batch. The acquired accuracy rates are 70% for batch 1, 80% for batch 2, and 80% 

for batch 3 training, respectively.  

 

4.3 Lung Cancer Detection utilizing convolutional neural networks (CNNs) with a single 

batch training  

 

The suggested convolutional neural network (CNN) was trained using a training set of twenty 

CT pictures, ten of which were of normal lungs and ten of which were of lung cancer. 

Various CT scans of the lungs, some normal and some pathological, serve as the training 

images. Two sections make up the result analysis: a) The outcomes of the training process; b) 

the findings of the testing process; and accordingly.  

4.3.1. Evaluation of training results  

Twenty CT scans of the lungs were extracted from the LIDC database for the purpose of 

training. When training a CNN, it is common practice to hold constant the number of filters, 

pool size, and kernel size while adjusting the following parameters: a) momentum, b) starting 

learning rate, and c) maximum epochs. Tables 2–4 showcase the CNN accuracy as a function 

of a) momentum, b) initial learning rate (LR), and c) kernel size, in that order. Results from 

training tables 2 and 3 show that with a momentum value of 0.9 and a learning rate value of 

0.01 in 68.41 seconds, CNN training achieved 100% accuracy.  

 

 

In order to determine the optimal kernel size, the results of the training experiments are 

shown in Table 4. Among the tested kernel sizes (3×3, 5×5, and 9×9), the 3×3 kernel size 

yielded training results that were 100% correct in 39.96 seconds. There is a 100% success 

rate while training with epochs of 5, 10, 20, and 30. Nevertheless, for the sake of future 

experiments, a conservative value of 30 epochs is used. 
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According to the study's findings, the optimal training parameters comprise a convolution 

layer equipped with 20 filters, each having a 5×5 filter size, a learning rate set at 0.01 with 

0.9 momentum, a pool dimension of 2, a stride of 2×2, a maximum of 30 epochs, and a fully 

connected layer designed to output two classes: non-cancerous and cancerous. These 

parameters are employed for further experimental investigation. The appendix contains two 

graphs illustrating the outcomes: one demonstrates the training accuracy plotted against the 

number of epochs, while the other displays the training loss against the number of epochs. 

Notably, the results were obtained after approximately 5 or 8 epochs, respectively. 

 4.3.2: Analyzing Test Results  

The optimal CNN settings were maintained during the two-cycle testing process, which used 

10 and 15 lung CT images, respectively. Table 5 shows the accuracy of the CNN network's 

detection for the test database, along with estimates of the calculation time. Among the 

testing accuracy results achieved with different kernel sizes, the 3×3 kernel size demonstrated 

its effectiveness by yielding 100% testing accuracy in 0.944 seconds. The testing CNN 

network's performance is shown in Figure 5's confusion matrix. For Test data set I, the 

confusion matrix in Figure 5(a) shows 100% accuracy in classification, and for Data set II, it 

is shown in Figure 5(b). The various classification algorithms that were used are displayed in 

Table 6. Among the methods tested, CNN with single batch training achieved the best results, 

while SVM had the lowest accuracy at 60%. According to Table 7, the proposed CNN model 

outperforms the current state-of-the-art made by other researchers.  
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Figure 4. Plot of training (a) loss v/s number of epochs and (b) accuracy v/s number of 

epochs 
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CONCLUSION  

CNN-assisted deep learning technique has been introduced that can categorize jpeg lung CT 

pictures with a resolution of 512×512 pixels as either non-cancerous or malignant. Color CT 

scans of the lungs are first greyscale and subsequently transformed to black and white in 

preparation for analysis. Twenty CT scans were utilized for the training set, whereas ten 

(normal plus abnormal) out of fifteen images were used for testing. Both a support vector 

machine (SVM) classifier and a convolutional neural network (CNN) trained with numerous 

batches and a single batch are detailed here. Our method is superior to the state-of-the-art 

work of earlier researchers since our CNN approach with single batch training achieved 

100% accuracy in lung cancer diagnosis in less time than the other way. As a result, we can 

say with confidence that CNN-based deep learning can automate the early detection of lung 

cancer using CT scans of the lung. Potential future work includes measuring nodule size for 

Lung cancer image categorization as (i) unknown, (ii) benign, (iii) malignant, or (iv) 

metastatic cancer, as well as evaluating the developed CNN on a larger number of Lung 

Cancer CT images to prove its robustness.  
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